

Network Diagnosis

Jennifer Rexford Fall 2010 (TTh 1:30-2:50 in COS 302)

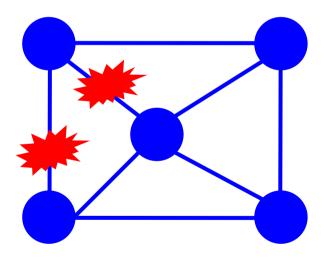
COS 561: Advanced Computer Networks http://www.cs.princeton.edu/courses/archive/fall10/cos561/

Networks Break (In Weird Ways)

- Bad things happen
 - -Reliability: link, router, firewall, DNS server, Web server
 - Performance : congestion, long paths, overloaded server
- Not straight-forward
 - -Selective failure (e.g., MTU mismatch, server replica)
 - Application problems (e.g., receive window)
 - Short-lived problems (e.g., convergence, incast)
 - Problems in other domains (e.g., downstream loss)
 - -Unexpected causes (e.g., hot weather, software bugs)
- Yet, we can approach diagnosis in a rigorous way

Detecting and Diagnosing Problems

- Do nothing
 - -Rely on the network to adapt to failures
 - -E.g., dynamic routing protocols, TCP congestion control
 - Doesn't help in detecting and fixing persistent problems
- Direct observation
 - Detailed measurement to observe problem directly
 - -E.g., route monitoring, fault logs, ...
 - -High overhead and works only for problems you know


Inference

- Infer the root causes from indirect observations
- Common attributes of the observed failures, and uncommon attributes of the things that don't fail

Fault Localization in a Single Domain

- Failures are often correlated
 - -Links connected to same router or traversing same fiber
 - -Routers using same power supply or software version
- Inputs
 - -Shared risk link groups
 - Group of failed components
- Output
 - Most likely root cause
- Practical challenge: dirty data
 - -Lost failure-reporting messages
 - Inaccurate model of risk groups

Fault Localization in Path-Vector Routing

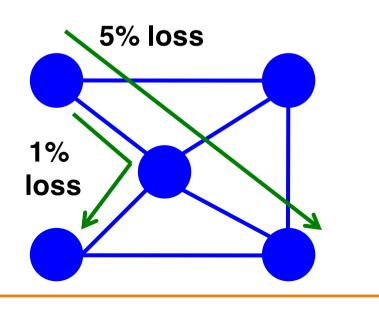
- Routing changes are correlated
 - -A single link failure causes multiple routing changes
 - $-\dots$ for all paths that traverse the failed edge
- Inputs
 - -No knowledge of the underlying topology
 - -Path changes viewed from several vantage points
- Output
 - -Link(s) responsible for the changes
 - "145"

4

'135"

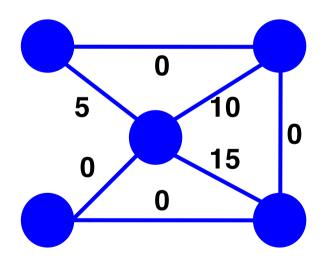
3

- Practical challenges
 - Incomplete data, multiple failures
 - Complex routing policies


2

Link-Level Parameter Estimation

6


- Path performance is correlated
 - -Path performance is affected by each link in the path
 - -Many paths have (some) common links
- Inputs
 - -Network topology and routes
 - -Path-level observations of packet loss, delay, ...
- Outputs
 - -Estimate of link parameters
- Practical challenges: noise — Time-varying link properties

Path-Level Traffic Intensity Estimation

- Link loads are correlated
 - Each ingress-egress pair imparts load on all the links along a path
- Inputs
 - -Network topology and routes
 - Total traffic load on each link
- Outputs
 - Offered load for each ingress-egress pair
- Practical challenge
 - Under-constrained inference problem

